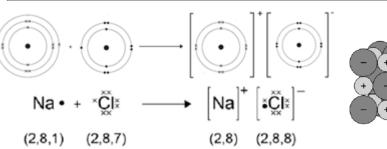
KNOWLEDGE

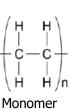
Chemistry Topic 2 Structure and bonding

Section 1: E	Bonding Key Terms				<u> </u>	Se	ection 4: Small (Carbon-Based	Structures
Ion		Section 2: Simple Covalent Molecules							
Ionic bond	An electrostatic attraction between two oppositely charged ions (metal and non-metal).	PropertyReasonLow melting and boiling points (usually gases or liquids)There are only weak intermolecular forces between the molecule which don't need much energy to overcome these forces.			ecules		Gra	phene	
Electrostatic attraction	The attraction between a negatively charged particle and a positively charged particle.		Covalent molecules are not charged & have no free moving electrons.			rons.			
Metals	In ionic bonding, metals lose electrons to become positively- charged ions.		Covalent dot diagrams show the electrons hav		ms		Fullerene	Nanotub	e
Non-metals	In ionic bonding, non-metals gain electrons to become negatively- charged ions. Located on the right hand side of the periodic table.	0 Water	but don't show ration atoms or their an space.	elative size rangement	of in Weak forces of attraction		Structure Hollow- shaped, cage like structures	Properties Very strong.	Uses Drug delivery, Iubricants,
Giant lattice	A large regular 3D structure that contains millions of bonds.		compounds, all the	Properties of Diamond		Fullerene	and tubes which also contain hexagonal rings.	contain other	catalysts (large surface to volume ratio)
Covalent bond	A bond formed when non-metals share electrons . An electrostatic attraction between the positively charged nuclei of the bonded atoms and the	bonds in a giant lat		Property Doesn't conduct electricity	Reason Diamond doesn't contain delocalised electrons or ions .			within it.	and in electronics
Molecule	A small group of atoms held together with covalent bonds. Not charged.		n Diamond, each C s bonded to 4 other carbons in tetrahedral	Very hard	Each carbon bonds to 4 other carbon atoms with strong covalent bonds to form a lattice.		A single layer	Very strong & light. Has delocalised electrons so it	Electronics,
Polymer	Very large covalently bonded molecules with many repeating units . The bonding of a metal consists of a	Diamond	rrangement. Graphite contains	High melting point	A large amount of energy is needed to overcome all the strong covalent bonds in the lattice.		(one atom thick)		composites.
Metallic bonding Alloy	lattice of positive ions surrounded by a sea of delocalised electrons . The metallic bond is the Electrostatic attraction between the positive ions and the delocalised electrons. A mixture of two or more elements , at least one of which is a metal . E.g. steel is a mixture of iron and carbon.		layers of hexagons with each carbon having 3 bonds. The extra electrons become delocalised between the layers.	Propertie Property Conducts electricity Soft and slippery	s of Graphite Reason The delocalised electrons are free to move and carry charge through the structure. Only weak intermolecular forces exist between layers, so layers can slide	Carbon nanotube	Cylindrical tubes of carbon atoms that are very long compared to their diameter.	Very strong, light and flexible. Has delocalised	Nanotechnology , electronics, reinforcing (e.g. tennis rackets).


KNOWLEDGE

Chemistry Topic 2 Structure and bonding

ORGANISER


Section 5: Ionic Bonding

When a metal and a non-metal react together, the metal atom loses electrons and becomes a positive ion. The non-metal atom gains electrons and becomes a negative ion. The ionic bond is a strong electrostatic force of attraction between these oppositely charged ions.

		electricity	
Property	Reason		
High melting	Because it takes a lot of energy to overcome the many	Conduct heat	
point and boiling	strong ionic bonds in the lattice. There is a strong electrostatic force between the positive and negative ions in the giant lattice.		
lelectricity when	Ions are able to move so there is a flow of charged ions (current).		
liquia/ moiten			
Do not conduct electricity when solid	Ions are in fixed positions so cannot flow.		

Section 6: Polymers

A polymer is a substance made from **very large molecules** made up of many repeating units called monomers.

> forces between polymer molecules are relatively Polymer strong.

Section 7: Metallic Bonding

Properties of Pure Metals

meltina

Reason

Strong

carry a charge.

Property

High

points

Conduct

A pure metal consists of a lattice of positive ions surrounded by a sea of delocalised electrons.

electrostatic forces between the

positive ions and delocalised electrons.

Requires a large amount of energy to overcome.

the delocalised electrons are free to move and

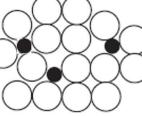
The **delocalised electrons** are free to **move and**

between the positive ions and delocalised electrons

prevents the metal from shattering.

transfer thermal energy through the structure. The lavers are able to slide over each other so the metal can be bent and shaped. The attraction

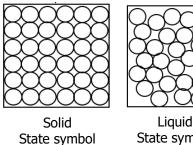
Section 8: Nanoparticles (triple only)

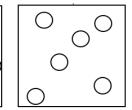

Nanoscience is the study of small particles that are between 1 and 100 nanometres in size.

Nanoparticles may have properties **different** from those for the same materials in bulk because of their high surface area to volume ratio.

Nanoparticles may result in smaller quantities of materials e.g. catalysts being needed for industry.

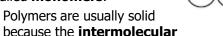
Uses	Advantage	
Sun cream (Zinc oxide nanoparticles)	manoparticles	Nanoparticles are smaller than skin cells so can go through the skin into the bloodstream, Unpredictable effect on our cells?
Silver nanoparticles used in fridges, antimicrobial dressings.	Inhibit growth of microorganisms (protect against bacteria)	Scientists are also worried about nanoparticles entering the environment and affecting aquatic life


Section 9: States of matter


Allov

Alloys are **harder** than pure metals because the **different** sized atoms distort the layers making it harder for them to slide.

Steel is an alloy consisting of Iron and carbon



(s)

State symbol (I)

Gas State symbol (g)

